> Início » Pesquisa identifica áreas com diferentes riscos de incêndios florestais no ES

Pesquisa identifica áreas com diferentes riscos de incêndios florestais no ES

por Water Waltim

Uma pesquisa desenvolvida no Programa de Pós-Graduação em Ciências Florestais (PPGCFL) da Ufes identificou áreas com diferentes riscos de incêndios florestais no Espírito Santo. O levantamento, feito em parceria com o Instituto Federal do Espírito Santo (Ifes) e a Universidade Federal do Piauí (UFPI), uniu conhecimentos de modelagem espacial e inteligência artificial.

Nos resultados da pesquisa, foi observado que áreas com alta densidade demográfica e com baixa altitude possuem maior probabilidade de ocorrência de incêndios florestais, enquanto as que possuem nível elevado de chuva apresentam menor probabilidade devido à umidade do solo e à altura da vegetação. Regiões mais vulneráveis socialmente e áreas com vegetação de restinga possuem maior probabilidade de incêndio. “O predomínio de herbáceas estabelecido em solo arenoso e com grande concentração de matéria orgânica facilita a ignição do fogo”, relata o professor do Departamento de Engenharia Florestal da UFPI e autor principal do estudo, Ronie Juvanhol, que foi orientado pelo professor da Ufes Nilton César Fiedler.

“A detecção de um aumento na temperatura e uma menor umidade relativa do ar pode indicar um aumento do risco de incêndio, permitindo que sejam tomadas medidas preventivas, como a realização de ações de limpeza das áreas próximas a pontos de risco, bem como o envio de equipes para patrulhar as áreas”, afirma o professor.

Metodologia

Modelagem espacial é uma abordagem utilizada no campo do geoprocessamento que analisa as transformações ocorridas no espaço geográfico, criando modelos matemáticos computacionais que capturam o contato de diferentes variáveis espaciais, como o relevo, o clima, a vegetação e a topografia.

A pesquisa utilizou tecnologias para maior eficiência e precisão nos resultados, e o algoritmo Classification and Progression Trees – CART (Árvores de Classificação e Progressão) foi uma delas. O CART é um método que pode ser utilizado para prever resultados ou classificar eventos com base em um conjunto de variáveis. O processo acontece em quatro etapas: primeiro o algoritmo seleciona a variável mais importante, depois os dados são divididos em duas partes, o que faz com que surjam dois subconjuntos de dados. Na terceira etapa, o algoritmo refaz os dois processos anteriores, o que faz com que novas divisões sejam feitas. O algoritmo para de dividir os dados quando a qualidade do modelo é avaliada de forma positiva. No final, é possível fazer previsões para novos dados.

Soluções

As informações que esses modelos preditivos oferecem ajudam os representantes públicos a compreenderem que cada localidade demanda cuidados diferentes, além de alertarem as equipes ambientais para que tomem medidas que previnam possíveis incêndios.

Segundo o professor, algumas medidas recomendadas para prevenção de incêndios são: o uso de imagens de satélite e drones para monitoramento de áreas de risco, o investimento em técnicas de manejo florestal, a educação da população acerca das consequências dos incêndios florestais e o investimento em brigadas de incêndio e no treinamento de equipes em caso de perigo. “As estratégias mencionadas podem ser eficazes para prevenir e combater incêndios florestais, desde que haja um compromisso do poder público em investir em tecnologias e treinamento de equipes especializadas”, completa.

O estudo possui o financiamento da Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (Fapes).

Texto: Hannahbella Queiroz (bolsista em projeto de Comunicação – Ufes)
Foto: Incêndio na Reserva Biológica de Sooretama – Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio)
Edição: Thereza Marinho

You may also like

Este website utiliza cookies para melhorar a sua experiência. Assumiremos que está de acordo com isto, mas pode optar por não aceitar se assim o desejar. Aceitar Ler mais